

 Navigation

 	
 index

 	
 next |

 	cbcpost 2016.1.0 documentation

cbcpost - a postprocessing framework for FEniCS

cbcpost is developed to simplify the postprocessing of simulation results, produced by FEniCS solvers.

The framework is designed to take any given solution, and compute and save any derived data. Derived data can easily be made highly complex, due to the modular design and implementation of computations of quantities such as integrals, derivatives, magnitude etc, and the ability to chain these.

The interface is designed to be simple, with minimal cluttering of a typical solver code. This is illustrated by the following simple example:

... problem set up ...

Set up postprocessor
solution = SolutionField("Displacement", dict(save=True))
postprocessor = PostProcessor(dict(casedir="Results/"))
postprocessor.add_field(solution)

Add derived fields
postprocessor.add_fields([
 Maximum("Displacement", dict(save=True)),
 TimeAverage("Displacement", dict(save=True, start_time=1.0,
 end_time=2.0)),
])

t = 0.0
timestep = 0
while t < T:
 timestep += 1
 # ... solve equation ...

 # Update postprocessor
 postprocessor.update_all(dict("Displacement"=lambda: u), timestep, t)

 # continue

cbcpost is developed at the Center for Biomedical Computing [http://cbc.simula.no/pub/], at Simula Research Laboratory [https://www.simula.no/] by Øyvind Evju [https://www.simula.no/people/oyvinev] and Martin Sandve Alnæs [https://www.simula.no/people/martinal].

Contents:

	1. Installation
	1.1. Dependencies

	1.2. Installing

	2. Features

	3. Demos
	3.1. A Basic Use Case

	3.2. Restart a Problem

	3.3. Replay a Problem

	4. Functionality
	4.1. The Field-class and subclasses

	4.2. The postprocessor

	4.3. Replay

	4.4. Batch running (cbcbatch)

	4.5. Dashboard view (cbcdashboard)

	4.6. Restart

	4.7. Utilities

	5. Overview of available functionality
	5.1. Postprocessor

	5.2. Replay

	5.3. Restart

	5.4. Fields

	5.5. Parameter system

	5.6. Other Classes

	5.7. Other Functions

	5.8. Utilities

	6. Contributing
	6.1. Pull requests

	6.2. Report problems

	6.3. Contact developers

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

1. Installation

1.1. Dependencies

The installation of cbcpost requires the following environment:

	Python 2.7

	Numpy

	Scipy

	Any dbm compatible database (dbhash, dbm or gdbm)

	FEniCS [http://fenicsproject.org]

	fenicstools (optional but highly recommended, tools to inspect parts of a solution)

To install FEniCS, please refer to the FEniCS download page [http://fenicsproject.org/download/].

To install fenicstools, please refer to the github page [http://github.org/mikaem/fenicstools].

cbcpost and fenicstools follows the same version numbering as FEniCS,
so make sure you install the matching versions.
Backwards compatibility is not guaranteed (and quite unlikely).

In addition, to run the test suite

	pytest >2.4.0

	docutils

1.2. Installing

Get the software with git and install using pip:

git clone https://bitbucket.org/simula_cbc/cbcpost.git
cd cbcpost
pip install .

See the pip documentation for more installation options.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

2. Features

The core concept in cbcpost is the Field, which represents
something that can be computed from simulation solutions or other fields.
The main features of cbcpost are

	Saving in 7 different save formats (xdmf, hdf5, xml, xml.gz, pvd, shelve, txt)

	Plotting using dolfin.plot or pyplot

	Automatic planning of field computations, saving and plotting

	Automatic dependency handling

	A range of predefined fields built in, including time integrals, point evaluations and norms

	Easily expandable with custom Field-subclasses

	Compute fields during simulation or replay from results on file

	Restart support

	Flexible parameter system

	Small footprint on solver code

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

3. Demos

To get started, we recommend starting with the demos.
For explanation of generic FEniCS features, please refer to the official
FEniCS documentation [https://fenicsproject.org/documentation/].

	3.1. A Basic Use Case
	3.1.1. Setting up the problem

	3.1.2. Setting up the PostProcessor

	3.1.3. Solving the problem

	3.2. Restart a Problem

	3.3. Replay a Problem

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	3. Demos

3.1. A Basic Use Case

To demonstrate the functionality of the postprocessor, consider the case of the 3D heat equation with
variable diffusivity. The full demo can be found in Basic.py.

The general heat equation reads

\[\frac{\partial u}{\partial t} + \alpha(x) \Delta u = f\]

where u typically denotes the temperature and \(\alpha\) denotes the material diffusivity.

Boundary conditions are in our example given as

\[u(x,t) = Asin(2\pi tx_0), x \in \partial \Omega\]

and initial condition

\[u(x,0) = 0.\]

We also use f=0, and solve the equations at the unit cube for \(t \in (0,3]\).

3.1.1. Setting up the problem

We start by defining a set of parameters for our problem:

from cbcpost import *
from cbcpost.utils import cbc_print
from dolfin import *
set_log_level(WARNING)

Create parameters for problem
params = ParamDict(
 T = 3.0, # End time
 dt = 0.05, # Time step
 theta = 0.5, # Time stepping scheme (0.5=Crank-Nicolson)
 alpha0 = 10.0, # Outer diffusivity
 alpha1 = 1e-3, # Inner diffusivity
 amplitude = 3.0, # Amplitude of boundary condition
)

The parameters are created using the utility class ParamDict, which extends the built-in python
dict with dot notation to access values. We use the parameters to set up the problem using FEniCS:

Create mesh
mesh = UnitCubeMesh(21,21,21)

Function spaces
V = FunctionSpace(mesh, "CG", 1)
u,v = TrialFunction(V), TestFunction(V)

Time and time-stepping
t = 0.0
timestep = 0
dt = Constant(params.dt)

Initial condition
U = Function(V)

Define inner domain
def inside(x):
 return (0.5 < x[0] < 0.8) and (0.3 < x[1] < 0.6) and (0.2 < x[2] < 0.7)

class Alpha(Expression):
 "Variable conductivity expression"
 def __init__(self, alpha0, alpha1):
 self.alpha0 = alpha0
 self.alpha1 = alpha1

 def eval(self, value, x):
 if inside(x):
 value[0] = self.alpha1
 else:
 value[0] = self.alpha0

Conductivity
alpha = project(Alpha(params.alpha0, params.alpha1), V)

Boundary condition
u0 = Expression("ampl*sin(x[0]*2*pi*t)", t=t, ampl=params.amplitude)
bc = DirichletBC(V, u0, "on_boundary")

Source term
f = Constant(0)

Bilinear form
a = (1.0/dt*inner(u,v)*dx()
 + Constant(params.theta)*alpha*inner(grad(u), grad(v))*dx)
L = (1.0/dt*inner(U,v)*dx()
 + Constant(1-params.theta)*alpha*inner(grad(U), grad(v))*dx()
 + inner(f,v)*dx())
A = assemble(a)
b = assemble(L)
bc.apply(A)

3.1.2. Setting up the PostProcessor

To set up the use case, we specify the case directory, and asks to clean out the case directory if there
is any data remaining from a previous simulation:

pp = PostProcessor(dict(casedir="Results", clean_casedir=True))

Since we’re solving for temperature, we add a SolutionField to the postprocessor:

pp.add_field(SolutionField("Temperature", dict(save=True,
 save_as=["hdf5", "xdmf"],
 plot=True,
 plot_args=dict(range_min=-params.amplitude,
 range_max=params.amplitude),
)))

Note that we pass parameters, specifying that the field is to be saved in hdf5 and xdmf formats. These
formats are default for dolfin.Function-type objects. We also ask for the Field to be plotted, with plot_args
specifying the plot window. These arguments are passed directly to the dolfin.plot-command.

3.1.2.1. Time derivatives and time integrals

We can compute both integrals and derivatives of other Fields. Here, we add the integral of temperature from
t=1.0 to t=2.0, the time-average from t=0.0 to t=5.0 as well as the derivative of the temperature field.

pp.add_fields([
 TimeIntegral("Temperature", dict(save=True, start_time=1.0,
 end_time=2.0)),
 TimeAverage("Temperature", dict(save=True, end_time=params.T)),
 TimeDerivative("Temperature", dict(save=True)),
])

Again, we ask the fields to be saved. The storage formats are determined by the datatype returned from the
compute-functions.

3.1.2.2. Inspecting parts of a solution

We can also define fields to inspect parts of other fields. For this, we use some utilities from
cbcpost.utils.
For this problem, the domain of a different diffusivity lies entirely within the unit cube, and thus it may
make sense to view some of the interior. We start by creating (sub)meshes of the domains we wish to inspect:

from cbcpost.utils import create_submesh, create_slice
celldomains = CellFunction("size_t", mesh)
celldomains.set_all(0)
AutoSubDomain(inside).mark(celldomains, 1)

slicemesh = create_slice(mesh, (0.7,0.5,0.5), (0.0,0.0,1.0))
submesh = create_submesh(mesh, celldomains, 1)

We then add instances of the fields PointEval, SubFunction and Restrict to the
postprocessor:

pp.add_fields([
 PointEval("Temperature", [[0.7,0.5, 0.5]], dict(plot=True)),
 SubFunction("Temperature", slicemesh, dict(plot=True,
 plot_args=dict(range_min=-params.amplitude,
 range_max=params.amplitude, mode="color"))),
 Restrict("Temperature", submesh, dict(plot=True, save=True)),
])

3.1.2.3. Averages and norms

We can also compute scalars from other fields. DomainAvg compute the average of a specified domain
(if not specified, the whole domain). Here, we compute the average temperature inside and outside the domain
of different diffusivity, as specified by the variable cell_domains:

pp.add_fields([
 DomainAvg("Temperature", cell_domains=cell_domains,
 indicator=1, label="inner"),
 DomainAvg("Temperature", cell_domains=cell_domains,
 indicator=0, label="outer"),
])

The added parameter label does that these fields are now identified by DomainAvg_Temperature-inner and
DomainAvg_Temperature-inner, respectively.

We can also compute the norm of any field:

pp.add_field(Norm("Temperature", dict(save=True)))

If no norm is specified, the L2-norm (or l2-norm) is computed.

3.1.2.4. Custom fields

The user may also customize fields with custom computations. In this section we demonstrate two ways to compute the difference
in average temperature between the two areas of different diffusivity at any given time. First, we take an
approach based solely on accessing the Temperature-field:

class TempDiff1(Field):
 def __init__(self, domains, ind1, ind2, *args, **kwargs):
 Field.__init__(self, *args, **kwargs)
 self.domains = domains
 self.dx = Measure("dx", domain=self.domains.mesh(),
 subdomain_data=self.domains)
 self.ind1 = ind1
 self.ind2 = ind2

 def before_first_compute(self, get):
 self.V1 = assemble(Constant(1)*self.dx(self.ind1))
 self.V2 = assemble(Constant(1)*self.dx(self.ind2))

 def compute(self, get):
 u = get("Temperature")
 T1 = 1.0/self.V1*assemble(u*self.dx(self.ind1))
 T2 = 1.0/self.V2*assemble(u*self.dx(self.ind2))
 return T1-T2

In this implementation we have to specify the domains, as well as compute the respective averages directly
each time. However, since we already added fields to compute the averages in both domains, there is another,
much less code-demanding way to do this:

class TempDiff2(Field):
 def compute(self, get):
 T1 = get("DomainAvg_Temperature-inner")
 T2 = get("DomainAvg_Temperature-outer")
 return T1-T2

Here, we use the provided get-function to access the fields named as above, and compute the difference.
We add an instance of both to the potsprocessor:

pp.add_fields([
 TempDiff1(cell_domains, 1, 0, dict(plot=True)),
 TempDiff2(dict(plot=True)),
])

Since both these should be the same, we can check this with ErrorNorm:

pp.add_field(
 ErrorNorm("TempDiff1", "TempDiff2", dict(plot=True), name="error"),
)

We ask for the error to be plotted. Since this is a scalar, this will be done using matplotlibs
pyplot-module. We also pass the keyword argument name, which overrides the default naming (which
would have been ErrorNorm_TempDiff1_TempDiff2) with error.

3.1.2.5. Combining fields

Finally, we can also add combination of fields, provided all dependencies have already been added to the
postprocessor. For example, we can compute the space average of a time-average of our field
Restrict_Temperature the following way:

pp.add_fields([
 TimeAverage("Restrict_Temperature"),
 DomainAvg("TimeAverage_Restrict_Temperature", params=dict(save=True)),
])

If TimeAverage(“Restrict_Temperature”) is not added first, adding the DomainAvg-field would
fail with a DependencyException, since the postprocessor would have no knowledge of the field
TimeAverage_Restrict_Temperature.

3.1.2.6. Saving mesh and parameters

We choose to store the mesh, domains and parameters associated with the problem:

pp.store_mesh(mesh, cell_domains=cell_domains)
pp.store_params(params)

These will be stored to mesh.hdf5, params.pickle and params.txt in the case directory.

3.1.3. Solving the problem

Solving the problem is done very simply here using simple FEniCS-commands:

solver = KrylovSolver(A, "cg", "hypre_amg")
while t <= params.T+DOLFIN_EPS:
 cbc_print("Time: "+str(t))
 u0.t = float(t)

 assemble(L, tensor=b)
 bc.apply(b)
 solver.solve(U.vector(), b)

 # Update the postprocessor
 pp.update_all({"Temperature": lambda: U}, t, timestep)

 # Update time
 t += float(dt)
 timestep += 1

Note the single call to the postprocessor, pp.update_all, which will then execute the logic for the
postprocessor. The solution Temperature is passed in a dict as a lambda-function. This lambda-function
gives the user flexibility to process the solution in any way before it is used in the postprocessor. This
can for example be a scaling to physical units or joining scalar functions to a vector function.

Finally, at the end of the time-loop we finalize the postprocessor through

pp.finalize_all()

This command will finalize and return values for fields such as for example time integrals.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	3. Demos

3.2. Restart a Problem

Say we wish to run our simulation further than t=3.0, to see how it develops. To restart a problem, all you
need is to use the computed solution as initial condition in a similar problem setup.

Restarting the heat equation solved as in A Basic Use Case, can be done really simple
with cbcpost. Starting with the python file in A Basic Use Case, we only have to make a couple of minor
changes.

We change the parameters T0 and T to look at the interval \(t \in [3,6]\):

params.T0 = 3.0
params.T = 6.0

and we replace the initial condition, using the Restart-class:

Get restart data
restart = Restart(dict(casedir="../Basic/Results/"))
restart_data = restart.get_restart_conditions()

Initial condition
U = restart_data.values()[0]["Temperature"]

Note that we point Restart to the case directory where the solution is stored. We could also choose
to write our restart data to the same directory when setting up the postprocessor:

pp = PostProcessor(dict(casedir="../Basic/Results"))

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	3. Demos

3.3. Replay a Problem

Once a simulation is completed, one might want to compute other fields of the solution. This can be
done with cbcposts Replay-functionality. The process can be done in very few lines of code.

In the following, we initialize a replay of the heat equation solved in A Basic Use Case and restarted in Restart a Problem. First, we set up a postprocessor with the fields we wish to compute:

from cbcpost import *
from dolfin import set_log_level, WARNING, interactive
set_log_level(WARNING)

pp = PostProcessor(dict(casedir="../Basic/Results"))

pp.add_fields([
 SolutionField("Temperature", dict(plot=True)),
 Norm("Temperature", dict(save=True, plot=True)),
 TimeIntegral("Norm_Temperature", dict(save=True, start_time=0.0,
 end_time=6.0)),
])

To replay the simulation, we do:

replayer = Replay(pp)
replayer.replay()
interactive()

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

4. Functionality

The main functionality is handled with a PostProcessor-instance, populated with several Field-items.

The Field-items added to the PostProcessor can represent meta computations (MetaField, MetaField2) such as time integrals or time derivatives, restrictions or subfunction, or norms. They can also represent custom computations, such as stress, strain, stream functions etc. All subclasses of the Field-class inherits a set of parameters used to specify computation logic, and has a set of parameters related to saving, plotting, and computation intervals.

The Planner, instantiated by the PostProcessor, handles planning of computations based on Field-parameters. It also handles the dependency, and plans ahead for computations at a later time.

For saving purposes the PostProcessor also creates a Saver-instance. This will save Fields as specified by the Field-parameters and computed fields. It saves in a structured manner within a specified case directory.

In addition, there is support for plotting in the Plotter-class, also created within the PostProcessor. It uses either dolfin.plot or pyplot.plot to plot data, based on the data format.

	4.1. The Field-class and subclasses
	4.1.1. Subclassing the Field-class

	4.1.2. Field names

	4.1.3. The get-argument

	4.1.4. Parameters

	4.1.5. SolutionField

	4.1.6. MetaField and MetaField2

	4.1.7. Provided fields

	4.2. The postprocessor
	4.2.1. The update_all-function

	4.2.2. Dependency handling

	4.2.3. Planner

	4.2.4. Saver

	4.2.5. Plotter

	4.3. Replay

	4.4. Batch running (cbcbatch)

	4.5. Dashboard view (cbcdashboard)

	4.6. Restart
	4.6.1. Specify restart time

	4.6.2. Fetch multiple restart times

	4.6.3. Rollback case directory for restart

	4.6.4. Specifying solution names to fetch

	4.6.5. Changing function spaces

	4.7. Utilities
	4.7.1. The ParamDict-class

	4.7.2. The Parameterized-class

	4.7.3. Pooling of function spaces

	4.7.4. Submesh creation

	4.7.5. Mesh slicing

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	4. Functionality

4.1. The Field-class and subclasses

To understand how cbcpost works, one first needs to understand the role of Fields. All desired postprocessing must be added to the PostProcessor as subclasses of Field. The class itself is to be considered as an abstract base class, and must be subclassed to make sense.

All subclasses are expected to implement (at minimum) the Field.compute()-method. This takes a single argument which can be used to retrieve dependencies from other fields.

An important property of the Field-class, is the parameters. Through the Parameterized-interface, it implements a set of default parameters that is used by the PostProcessor when determining how to handle any given Field, with respect to computation frequency, saving and plotting.

4.1.1. Subclassing the Field-class

To compute any quantity of interest, one needs to either use one of the provided metafields or subclass Field. In the following, we will first demonstrate the simplicity of the interface, before demonstrating the flexibility of it.

4.1.1.1. A viscous stress tensor

The viscous stress tensor for a Newtonian fluid is computed as

\[\sigma(\mathbf{u}, p) = -p\mathbb{I}+\mu(\nabla \mathbf{u}+\nabla \mathbf{u}^T)\]

where \(\mu\) is the dynamic viscosity, \(\mathbf{u}\) is the fluid velocity and \(p\) is the pressure. A Field to compute this might be specified as the following:

from dolfin import *
from cbcpost import Field
from cbcpost.spacepool import get_grad_space
class Stress(Field):
 def __init__(self, mu, params=None, name="default", label=None):
 Field.__init__(self, params, name, label)
 self.mu = mu

 def before_first_compute(self, get):
 u = get("Velocity")

 # Create Function container on space of velocity gradient
 V = get_grad_space(u)
 self._function = Function(V, name=self.name)

 def compute(self, get):
 u = get("Velocity")
 p = get("Pressure")
 mu = self.mu

 expr = - p*Identity(u.cell().d) + mu*(grad(u)+grad(u)^T)

 return self.expr2function(expr, self._function)

Note that we have overridden three methods defined in Field:

	__init__

	before_first_compute

	compute

The __init__ method is only used to pass any additional arguments to our Field, in this case the viscosity. The keyword arguments params, name and label are passed directly to Field.__init__().

before_first_compute is used to do any costly computations or allocations that are only required once. This is called from the postprocessor before any calls to compute is made. In this case we create a container (_function) that we can later use to store our computations. We use the get-argument to fetch the field named Velocity, and the helper function get_grad_space() to get the gradient space of the Velocity (a TensorFunctionSpace).

The compute method is responsible for computing our quantity. This is called from the postprocessor every time the Planner determines that this field needs to be computed. Here we use the get-argument to fetch the Velocity and Pressure required to compute the stress. We formulate the stress, and converts to a function using the helper function Field.expr2function().

4.1.1.2. Computing the maximum pressure drop

In this next section, we demonstrate some more functionality one can take advantage of when subclassing the Field-class. In a flow, the maximum pressure drop gives an indication of the forces involved in the flow. It can be written as

\[\tilde{p} := \max_{t \in [0,T]} (\max_{\mathbf{x} \in \Omega} p(\mathbf{x}, t) - \min_{\mathbf{x} \in \Omega} p(\mathbf{x}, t))\]

A Field-class to compute this can be implemented as

from dolfin import *
from cbcpost import Field
from cbcpost.spacepool import get_grad_space
class PTilde(Field):
 def add_fields(self):
 return [Maximum("Pressure"), Minimum("Pressure")]

 def before_first_compute(self, get):
 self._ptilde = 0.0
 self._tmax = 0.0

 def compute(self, get):
 pmax = get("Maximum_Pressure")
 pmin = get("Minimum_Pressure")
 t = get("t")

 if pmax-pmin > self._ptilde:
 self._ptilde = pmax-pmin
 self._tmax = t

 return None

 def after_last_compute(self, get):
 return (self._ptilde, self._tmax)

Here, we implement two more Field-methods:

	add_fields

	after_last_compute

The add_fields method is a convenience function to make sure that dependent Fields are added to the postprocessor. This can also be handled manually, but this makes for a cleaner code. Here we add two fields to compute the (spatial) Maximum and Minimum of the pressure.

The method after_last_compute is called when the compution is finished. This is determined by the time parameters (see Parameters), and handled within the postprocessors Planner-instance.

4.1.2. Field names

The internal communication of fields is based on the name of the Field-instances. The default name is

[class name]-[optional label]

The label can be specified in the __init__-method (through the label-keyword), or a specific name can be set using the name-keyword.

When subclassing the Field-class, the default naming convention can overloaded in the Field.name-property.

4.1.3. The get-argument

In the three methods before_first_compute, compute and after_last_compute a single argument (in addition to self) is passed from the postprocessor, namely the get-argument. This argument is used to fetch the computed value from other fields, through the postprocessor. The argument itself points to the PostProcessor.get()-method, and is typically used with these two arguments:

	Field name

	Relative timestep

A call using the get-function will trigger a computation of the field with the given name, and cache it in the postprocessor. Therefore, a second call with the same arguments, will return the cached value and not trigger a new computation.

The calls to the get-function also determines the dependencies of a Field (see Dependency handling).

4.1.4. Parameters

The logic of the postprocessor relies on a set of parameters defined on each Field. For explanation of the common parameters and their default, see Field.default_params().

4.1.5. SolutionField

The SolutionField-class is a convenience class, for specifying Field(s) that will be provded as solution variables. It requires a single argument as the name of the Field. Since it is a solution field, it does not implement it does not implement a compute-method, but relies on data passed to the PostProcessor.update_all() for its associatied data. It is used to be able to build dependencies in the postprocessor.

4.1.6. MetaField and MetaField2

Two additional base classes are also available. These are designed to allow for computations that are not specific (such as PTilde or Stress), but where you need to specify the Field(s) to compute on.

Subclasses of the MetaField-class include for example Maximum, Norm and TimeIntegral, and takes a single name (or Field) argument to specify which Field to do the computation on.

Subclasses of the MetaField2 include ErrorNorm, and takes two name (or Field) arguments to specify which Fields to compute with.

4.1.7. Provided fields

Several meta fields are provided in cbcpost, for general computations. These are summarized in the following table:

	Time dependent
	Spatially restricted
	Norms and averages
	Other

	TimeDerivative
	SubFunction
	DomainAvg
	Magnitude

	TimeIntegral
	Restrict
	Norm
	

	TimeAverage
	Boundary
PointEval
	ErrorNorm
Maximum
Minimum
	

For more details of each field, refer to metafields.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	4. Functionality

4.2. The postprocessor

The PostProcessor-class is responsible for all the logic behind the scenes. This includes logic related to:

	Dependency handling

	Planning and caching of computation

	Saving

	Plotting

The planning, saving and plotting is delegated to dedicated classes (Planner, Saver and Plotter), but is called from within a PostProcessor-instance.

4.2.1. The update_all-function

The main interface to the user is through the PostProcessor.update_all()-method. This takes three arguments: a dict representing the solution, the solution time and the solution timestep.

The time and timestep is used for saving logic, and stored in a play log and metadata of the saved data. This is necessary for the replay and restart functionality, as well as order both the saved and plotted fields.

The solution argument should be of the format:

solution = dict(
 "Velocity": lambda: u
 "Pressure": lambda: p
)

Note that we pass a lambda function as values in the dict. This is done to give the user the flexibility for special solvers, and can be replaced with any callable to do for example a conversion. This can be useful when there are discrepancies between the solver solution, and the desired physical solution. This could be for example a simple scaling, or it could be that a mixed or segregated approach is used in the solver.

Because this function might be non-negligible in cost, it will be treated in the same manner as the Field.compute()-method, and not called unless required.

4.2.2. Dependency handling

When a field is added to the postprocessor, a dependency tree is built. These dependencies represent the required fields (or time parameters) required to succesfully execute the compute-method.

The source code of the compute-function is inspected with the inspect-module, by looking for calls through the get-argument, and build a dependency tree from that.

Assume that the following code is executed:

pp = PostProcessor()
pp.add_field(SolutionField("F"))
pp.add_field(TimeDerivative("F"))

In that case, when the TimeDerivative-field is added to the postprocessor, the following code is inspected:

class TimeDerivative(MetaField):
 def compute(self, get):
 u1 = get(self.valuename)
 u0 = get(self.valuename, -1)

 t1 = get("t")
 t0 = get("t", -1)

 # ... [snip] ...

By evaluating the get-calls here, we are able to build the following dependency tree:

[image: Dependency tree built by pp.add_field(TimeDerivative("F"))db]

If we extend the above example to add the time derivative of the viscous stress tensor (see A viscous stress tensor) like the following:

pp = PostProcessor()
pp.add_fields([SolutionField("Velocity"), SolutionField("Pressure")])
pp.add_field(Stress())
pp.add_field(TimeDerivative("Stress"))

The first emphasized line will trigger building of the dependency tree for the stress:

[image: Dependency tree built by pp.add_field(Stress())]

while the second emphasized line will use this dependency tree, and trigger the building of the larger dependency tree

[image: Dependency tree built by pp.add_field(TimeDerivative("Stress"))]

4.2.3. Planner

The Planner-class will set up a plan of the computations for the coming timesteps. This algorithm will inspect the dependencies of each field, and compute the necessary fields at the required time.

In addition, it determines how long each computation should be kept in cache.

Note

This does not yet support variable timestepping.

4.2.4. Saver

The Saver-class handles all the saving operations in cbcpost. It will determine if and how to save based on Field-parameters. In addition, there are helper methods in PostProcessor for saving mesh and parameters.

For fields, several saveformats are available:

	Replay/restart-compatible
	Visualization
	Plain text

	hdf5
	xdmf
	txt

	xml
	pvd
	

	xml.gz
	
	

	shelve
	
	

The default save formats are:

	hdf5 and xdmf if data is dolfin.Function

	txt and shelve if data is float, int, list, tuple or dict

The saving is done in a structured manner below the postprocessors case director. Consider the following example:

pp = PostProcessor(dict(casedir="Results/"))
pp.add_fields([
 SolutionField("Pressure", save=True),
 Norm("Pressure", save=True),
])
pp.store_mesh(mesh, facet_domains=my_facet_domains,
 cell_domains=my_cell_domains)
pp.store_params(
 ParamDict(
 mu = 1.5,
 case = "A",
 bc = "p(0)=1",
)
)

Here, we ask the postprocessor to save the Pressure and the (L2-)norm of the pressure, we store the mesh with associated cell- and facet domains, and we save some (arbitrary) parameters. (Note the use of ParamDict).

This will result in the following structure of the Results-folder:

[image: File tree built by Saver-class.]

4.2.5. Plotter

Two types of data are supported for plotting:

	dolfin.Function-type objects

	Scalars (int, float, etc)

The Plotter-class plots using dolfin.plot or pyplot.plot depending on the input data. The plotting is updated each timestep the Field is directly triggered for recomputation, and rescaled if necessary. For dolfin plotting, arguments can be passed to the dolfin.plot-command through the parameter plot_args.

[image: ../_images/plotdolfin.png]
dolfin.Function objects are plotted with dolfin.plot

[image: ../_images/plotpyplot.png]
Simple scalars are plotted with pyplot

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	4. Functionality

4.3. Replay

One of the key functionalities of the cbcpost framework is the ability to replay problem. Consider the case where one wants to extract additional information from a simulation. Simulations are typically costly, and redoing simulations are not generally desired (or even feasible). This motivates the functionality to replay the simulation by loading the computed solution back into memory and compute additional fields.

This has several major benefits:

	Compute additional quantities

	Limit memory consumption of initial computation

	Compute quantities unsupported in parallel

	Compute costly, conditional quantities (e.g. not to be performed if simulation was unable to complete)

	Create visualization data

The interface to the replay module is minimal:

from cbcpost import PostProcessor, Replay

pp = PostProcessor(dict(casedir="ExistingResults/"))
pp.add_field(MyCustomField(), dict(save=True))

replayer = Replay(pp)
replayer.replay()

In the replay module, all fields that are stored in a reloadable format will be treated as a solution. They will be passed to a postprocessor as instances of the Loadable-class. This makes sure that no unnecessary I/O-operations occur, as the stored data are only loaded when they are triggered in the postprocessor.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	4. Functionality

4.4. Batch running (cbcbatch)

When you’ve set up a simulation in a python file, you can investigate a range of parameters through the shell script cbcbatch.
This allows you to easily run simulations required to for example compute convergence rates or parameter sensitivity with respect to some compute Field.

Based on the parameters of your solver or problem, you can set up parameter ranges with command line arguments to cbcbatch. Say for example that you wish to
investigate the effects of refinement level N and timestep dt over a given range. Then you can launch cbcbatch by invoking

cbcbatch run.py N=[8,16,32,64,128] dt=[0.1,0.05,0.025,0.0125] \
 casedir=BatchResults

where run.py is the python file to launch the simulation. This will then add all combinations of N and dt (5*4=20) to a queue, and launch simulations when the
resources are available. We call dt and N the batch parameters.

By default, cbcbatch runs on a single core, but this can be modified by setting the num_cores argument:

cbcbatch run.py N=[8,16,32,64,128] dt=[0.1,0.05,0.025,0.0125] \
 casedir=BatchResults num_cores=8

This will cause 8 simulations to be run at a time, and new ones started as soon as one core becomes available. Since there may be a large variations in computational
cost between parameters, it is also supported to tie one of the batch parameters to run in parallel with mpirun:

cbcbatch run.py N=[8,16,32,64,128] dt=[0.1,0.05,0.025,0.0125] \
 casedir=BatchResults num_cores=8 mpirun=[1,1,2,4,8] \
 mpirun_parameter=N

This command will run all simulations with N=1 and N=2 on a single core, N=32 on 2 cores, N=64 on 4 cores and N=128 on 8 cores.

Important

The runnable python file must set set_parse_command_line_arguments(True) to be run in batch mode.

Important

The command line parameters casedir, mpirun, mpirun_parameter and num_cores are reserved for cbcbatch and can thus not be used as batch parameters.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	4. Functionality

4.5. Dashboard view (cbcdashboard)

To easily view the results of a simulation postprocessed with cbcpost, you can use cbcdashboard. This is a command line scripts that launch a jupyter notebook
server, and opens a notebook containing a GUI to investigate the provided case directory. The case directory can either be a directory for a single simulation,
or containing results from a cbcbatch-run.

To view results launch the dashboad like this:

cbcdashboard casedir

execute the first cell of the notebook, the GUI will launch and show you the available simulation results, here with denoted widget areas:

[image: ../_images/cbcdashboard.png]

The interactive plot is an HTML-container that change based on the selected value, and can show both dolfin Functions (through X3DOM), time-dependent scalars and vectors (through
matplotlib and mpld3.figure_to_html), constant scalars and, in the case of batch directories, tables of constant scalars (through pandas.DataFrame.to_html).

Showing batch results can be done by pointing cbcdashboard to a directory created with cbcbatch and containing the results of that batch simulations. This will launch a
slightly different GUI, where you have the ability to select single batch parameters or set one or two batch parameter to all. When a batch parameter is set to all, it
will show the fields available for comparison between the simulations, allowing for detailed inspection of parameter sensitivity:

[image: ../_images/cbcdashboard1.png]

[image: ../_images/cbcdashboard2.png]

By specifying all parametersm you can investigate the solutions directly, similar to what you can if specifying a single case directory.

Currently, you can only change the browser to open the notebook in from the command line, by passing browser=my-favourite-browser to cbcdashboard.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	4. Functionality

4.6. Restart

The restart functionality lets the user set up a problem for restart. This functionality is based on the idea that a restart of a simulation is nothing more than changing the initial conditions of the problem in question. Therefore, the Restart-class is used to extract the solution at any given time(s) in a format that may be used as intiial conditions.

If we want to restart any problem, where a solution has been stored by cbcpost, we can simply point to the
case directory:

from cbcpost import *
restart = Restart(dict(casedir='Results/'))
restart_data = restart.get_restart_conditions()

If you for instance try to restart the simple case of the heat equation, restart_data will be a dict of
the format {t0: {“Temperature”: U0}}. If you try to restart for example a (Navier-)Stokes-problem, it will take
a format of {t0: {“Velocity”: U0, “Pressure”: P0}}.

There are several options for fetching the restart conditions.

4.6.1. Specify restart time

You can easily specify the restart time to fetch the solution from:

t0 = 2.5
restart = Restart(dict(casedir='Results/', restart_times=t0))
restart_data = restart.get_restart_conditions()

If the restart time does not match a solution time, it will do a linear interpolation between the closest
existing solution times.

4.6.2. Fetch multiple restart times

For many problems, initial conditions are required at several time points
prior to the desired restart time. This can be handled through:

dt = 0.01
t1 = 2.5
t0 = t1-dt
restart = Restart(dict(casedir='Results/', restart_times=[t0,t1]))
restart_data = restart.get_restart_conditions()

4.6.3. Rollback case directory for restart

If you wish to write the restarted solution to the same case directory, you will need to clean up the case
directory to avoid write errors. This is done by setting the parameter rollback_casedir:

t0 = 2.5
restart = Restart(dict(casedir='Results/', restart_times=t0,
 rollback_casedir=True))
restart_data = restart.get_restart_conditions()

4.6.4. Specifying solution names to fetch

By default, the Restart-module will search through the case directory for all data stored as a
SolutionField. However, you can also specify other fields to fetch as restart data:

solution_names = ["MyField", "MyField2"]
restart = Restart(dict(casedir='Results/', solution_names=solution_names))
restart_data = restart.get_restart_conditions()

In this case, all SolutionField-names will be ignored, and only restart conditions from fields
named MyField and MyField2 will be returned.

4.6.5. Changing function spaces

If you wish to restart the simulation using different function spaces, you can pass the function spaces
to get_restart_conditions:

V = FunctionSpace(mesh, "CG", 3)
restart = Restart(dict(casedir='Results/'))
restart_data = restart.get_restart_conditions(spaces={"Temperature": V})

Note

This does not currently work for function spaces defined on a different mesh.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	4. Functionality

4.7. Utilities

A set of utilities are provided with cbcpost. Below are just a few of them. For a more complete set of utilities, refer to the programmers-reference.

4.7.1. The ParamDict-class

The ParamDict-class extends to the stadard python dict. It supports dot-notation (mydict[“key”] == mydict.key), and nested parameters.

Todo

Extend this documentation.

4.7.2. The Parameterized-class

The Parameterized-class is sued for classes that are associated with a set of parameters. All subclasses must implement the method Parameterized.default_params(), which return a ParamDict/dict with default values for the parameters.

When initialized, it takes a params-option where specific parameters are set, and overwriting the associated parameters returned from default_params. This is then stored in an attribute params attached to the object.

When initializing a Parameterized-object, no new keys are allowed. This means that all parameters of a Parameterized-instance must be defined with default values in default_params.

The class is subclasses several places within cbcpost:

	Field

	PostProcessor

	Restart

	Replay

4.7.3. Pooling of function spaces

When using many different functions across a large function, it may be useful to
reuse FunctionSpace definitions. This has two basic advantages:

	Reduced memory consumption

	Reduced computational cost

Space pools are grouped according to mesh, with Mesh.id() used as keys in
a weakref.WeakValueDictionary. Once a mesh is out of focus in the program,
the related SpacePool is removed.

4.7.4. Submesh creation

The SubMesh-class in dolfin is not currently supported in dolfin. In cbcpost, the function create_submesh() is the equivalent functionality, but with parallel support.

This allows for arbitrary submeshes in parallel based by providing a MeshFunction and marker.

[image: ../_images/submesh.png]
Submesh created with create_submesh in cbcpost.

4.7.5. Mesh slicing

Three-dimensional meshes can be sliced in cbcpost with the Slice-class. The Slice-class takes basemesh, togetther with a point and normal defining the slicing plane, to create a slicemesh.

The Slice-class is a subclass of dolfin.Mesh.

[image: ../_images/slicemesh.png]
A complex 3D-mesh, with an associated slicemesh.

Warning

Slice-instances are intended for visualization only, and may produce erronous
results if used for computations.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

5. Overview of available functionality

	5.1. Postprocessor
	5.1.1. PostProcessor

	5.1.2. Planner

	5.1.3. Saver

	5.1.4. Plotter

	5.2. Replay
	5.2.1. Replay

	5.3. Restart
	5.3.1. Restart

	5.4. Fields
	5.4.1. Field bases
	5.4.1.1. ConstantField

	5.4.1.2. Field

	5.4.1.3. MetaField

	5.4.1.4. MetaField2

	5.4.1.5. SolutionField

	5.4.1.6. Time

	5.4.2. Operators
	5.4.2.1. Add

	5.4.2.2. Divide

	5.4.2.3. Multiply

	5.4.2.4. OperatorField

	5.4.2.5. Subtract

	5.4.3. MetaFields
	5.4.3.1. Boundary

	5.4.3.2. DomainAvg

	5.4.3.3. DomainSD

	5.4.3.4. Dot

	5.4.3.5. ErrorNorm

	5.4.3.6. Magnitude

	5.4.3.7. Maximum

	5.4.3.8. Minimum

	5.4.3.9. Norm

	5.4.3.10. PointEval

	5.4.3.11. Restrict

	5.4.3.12. SubFunction

	5.4.3.13. Threshold

	5.4.3.14. TimeAverage

	5.4.3.15. TimeDerivative

	5.4.3.16. TimeIntegral

	5.5. Parameter system
	5.5.1. ParamDict

	5.5.2. Parameterized

	5.6. Other Classes
	5.6.1. MeshPool

	5.6.2. SpacePool

	5.7. Other Functions
	5.7.1. get_grad_space

	5.7.2. get_parse_command_line_arguments

	5.7.3. set_parse_command_line_arguments

	5.8. Utilities
	5.8.1. Functions
	5.8.1.1. boundarymesh_to_mesh_dofmap

	5.8.1.2. cbc_log

	5.8.1.3. cbc_print

	5.8.1.4. cbc_warning

	5.8.1.5. compute_connectivity

	5.8.1.6. create_function_from_metadata

	5.8.1.7. create_slice

	5.8.1.8. create_submesh

	5.8.1.9. get_memory_usage

	5.8.1.10. get_set_vector

	5.8.1.11. import_fenicstools

	5.8.1.12. in_serial

	5.8.1.13. mesh_to_boundarymesh_dofmap

	5.8.1.14. on_master_process

	5.8.1.15. restriction_map

	5.8.1.16. safe_mkdir

	5.8.1.17. strip_code

	5.8.1.18. time_to_string

	5.8.1.19. timeit

	5.8.2. Classes
	5.8.2.1. Loadable

	5.8.2.2. Slice

	5.8.2.3. Timer

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.1. Postprocessor

5.1.1. PostProcessor

All basic user interface is gathered here.

Default parameters are:

	Key
	Default value
	Description

	casedir
	‘.’
	Case directory - relative path to use for saving

	extrapolate
	True
	Constant extrapolation of fields prior to first
update call

	initial_dt
	1e-5
	Initial timestep. Only used in planning algorithm at first
update call.

	clean_casedir
	False
	Clean out case directory prior to update.

	flush_frequency
	1
	Frequency to flush shelve and txt files (playlog,
metadata and data)

5.1.2. Planner

Planner class to plan for all computations.

5.1.3. Saver

Class to handle all saving in cbcpost.

5.1.4. Plotter

Class to handle plotting of objects.

Plotting is done using pylab or dolfin, depending on object type.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.2. Replay

5.2.1. Replay

Replay class for postprocessing exisiting solution data.

Default parameters are:

	Key
	Default value
	Description

	check_memory_frequency
	0
	Frequency to report memory usage

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.3. Restart

5.3.1. Restart

Class to fetch restart conditions through.

Default parameters are:

	Key
	Default value
	Description

	casedir
	‘.’
	Case directory - relative path to read solutions from

	restart_times
	-1
	float or list of floats to find restart times from. If -1,
restart from last available time.

	solution_names
	‘default’
	Solution names to look for. If ‘default’, will fetch all
fields stored as SolutionField.

	rollback_casedir
	False
	Rollback case directory by removing all items stored after
largest restart time. This allows for saving data from a
restarted simulation in the same case directory.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.4. Fields

5.4.1. Field bases

5.4.1.1. ConstantField

Class for setting constant values. Helpful in dependency inspection.

5.4.1.2. Field

Base class for all fields.

Arguments:

	name:	Specify name for field. If default, a name will be created based on class-name.

	label:	Specify a label. The label will be added to the name, if name is default.

Default params are:

	Key
	Default value
	Description

	start_timestep
	-1e16
	Timestep to start computation

	end_timestep
	1e16
	Timestep to end computation

	stride_timestep
	1
	Number of steps between each computation

	start_time
	-1e16
	Time to start computation

	end_time
	1e16
	Time to end computation

	stride_time
	1e-16
	Time between each computation

	plot
	False
	Plot Field after a directly triggered computation

	plot_args
	{}
	Keyword arguments to pass to dolfin.plot.

	safe
	True
	Trigger safe computation. This allows get-calls to this field
outside postprocessor. Set to False to rely on postprocessor
and improve efficiency.

	save
	False
	Save Field after a directly triggered computation

	save_as
	‘determined by data’
	Format(s) to save in. Allowed save formats:

The default values are:

	[‘hdf5’, ‘xdmf’] if data is dolfin.Function

	[‘txt’, ‘shelve’] if data is float, int, list, tuple or dict

	expr2function
	‘assemble’
	How to convert Expression to Function. Allowed values:

	‘assemble’

	‘project’

	‘interpolate’

	finalize
	False
	Switch whether to finalize if Field. This is especially useful
when a costly computation is only interesting at the end time.

5.4.1.3. MetaField

Base class for all Fields that operate on a different Field.

Arguments:

	value:	Field or fieldname to operate on

5.4.1.4. MetaField2

Base class for all Fields that operate on two different Fields.

Arguments:

	value1:	First Field or fieldname to operate on

	value2:	Second Field or fieldname to operate on

5.4.1.5. SolutionField

Helper class to specify solution variables to the postprocessor.

Arguments:

	name:	Name of the solution field

This field can be added to the postprocessor, although it does not implement
a compute-method. A solution with the same name is expected to be passed
to the PostProcessor.update_all-method.

5.4.1.6. Time

Compute the time spent between before_first_compute and after_last_compute calls.

Useful for crude time measuring.

5.4.2. Operators

5.4.2.1. Add

Add two fields

5.4.2.2. Divide

Divide two fields

5.4.2.3. Multiply

Multiply two fields

5.4.2.4. OperatorField

Base class for all operators on fields

5.4.2.5. Subtract

Subtract two fields

5.4.3. MetaFields

5.4.3.1. Boundary

Extracts the boundary values of a Function and returns a Function object
living on the equivalent FunctionSpace on boundary mesh.

Only CG1 and DG0 spaces currently functioning.

5.4.3.2. DomainAvg

Compute the domain average for a specified domain. Default to computing
the average over the entire domain.

Parameters used to describe the domain are:

Arguments:

	measure:	Measure describing the domain (default: dx())

	cell_domains:	A CellFunction describing the domains

	facet_domains:	A FacetFunction describing the domains

	indicator:	Domain id corresponding to cell_domains or facet_domains

If cell_domains/facet_domains and indicator given, this overrides given measure.

5.4.3.3. DomainSD

Compute the domain standard deviation for a specified domain. Default to computing
the standard devitation over the entire domain.

Parameters used to describe the domain are:

Arguments:

	measure:	Measure describing the domain (default: dx())

	cell_domains:	A CellFunction describing the domains

	facet_domains:	A FacetFunction describing the domains

	indicator:	Domain id corresponding to cell_domains or facet_domains

If cell_domains/facet_domains and indicator given, this overrides given measure.

5.4.3.4. Dot

Compute the dot product between two fields

5.4.3.5. ErrorNorm

Computes the error norm of two Fields. If the Fields Function-objects, the computation is forwarded to
the dolfin function errornorm. Otherwise two float list-type object is expected, and the \(l^p\)-norm is computed as

\[||\mathbf{x-y}||_p := \left(\sum_i=1^n |x_i-y_i|^p \right)^{1/p}.\]

The \(\infty\)-norm is computed as

\[||\mathbf{x-y}||_\infty := max(|x_1-y_1|, |x_2-y_2|, ..., |x_n-y_n|)\]

Default parameters are:

	Key
	Default value
	Description

	norm_type
	‘default’
	The norm type to choose. For dolfin.Function or dolfin.Vector,
refer to dolfin.norm for valid norm types. Otherwise, p-norm is
supported. Invoke using ‘l2’, ‘l3’ etc, or ‘linf’ for max-norm.

	degree_rise
	3
	Parameter to be passed to dolfin.errornorm

	relative
	False
	Divide norm by the norm of first field

5.4.3.6. Magnitude

Compute the magnitude of a Function-evaluated Field.

Supports function spaces where all subspaces are equal.

5.4.3.7. Maximum

Computes the maximum of a Field.

5.4.3.8. Minimum

Computes the minimum of a Field.

5.4.3.9. Norm

Computes a norm of a Field. If the Field returns a Vector or Function, the computation is forwarded to
the dolfin function norm. Otherwise a float list-type object is expected, and the \(l^p\)-norm is computed as

\[||\mathbf{x}||_p := \left(\sum_i=1^n |x_i|^p \right)^{1/p}.\]

The \(\infty\)-norm is computed as

\[||\mathbf{x}||_\infty := max(|x_1|, |x_2|, ..., |x_n|)\]

Default parameters are:

	Key
	Default value
	Description

	norm_type
	‘default’
	The norm type to choose. For dolfin.Function or dolfin.Vector,
refer to dolfin.norm for valid norm types. Otherwise, p-norm is
supported. Invoke using ‘l2’, ‘l3’ etc, or ‘linf’ for max-norm.

5.4.3.10. PointEval

Evaluate a Field in points.

Arguments:

	points:	List of Points or tuples

This field requires fenicstools.

Default parameters are:

	Key
	Default value
	Description

	broadcast_results
	True
	Broadcast results from compute to all processes. If False,
result is ony returned on process 0

5.4.3.11. Restrict

Restrict is used to restrict a Field to a submesh of the
mesh associated with the Field.

This has only been tested for CG spaces and DG spaces of degree 0.

5.4.3.12. SubFunction

SubFunction is used to interpolate a Field on a non-matching mesh.

This field requires fenicstools.

5.4.3.13. Threshold

Compute a new Function based on input function and input threshold.
Returned Function is 1 where above/below threshold, and 0 otherwise.

Default parameters are:

	Key
	Default value
	Description

	threshold_by
	“below”
	Set the function to threshold “above” or “below” threshold function

5.4.3.14. TimeAverage

Compute the time average of a field \(F\) as

\[\frac{1}{T1-T0} \int_{T0}^{T1} F dt\]

Computes a TimeIntegral, and scales it.

5.4.3.15. TimeDerivative

Compute the time derivative of a Field \(F\) through an explicit difference formula:

F’(t_n) approx frac{F(t_n)-F(t_{n-1})}{t_n-t_{n-1}}

5.4.3.16. TimeIntegral

Compute a time integral of a field \(F\) by the backward trapezoidal method:

\[\int_{T0}^{T1} F dt \approx \sum_ {n=1}^{n=N} \frac{F(t_{n-1})+F(t_n)}{2} (t_{n-1}-t_n)\]

where \(t_0 = T0\) and \(t_N = T1\).

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.5. Parameter system

5.5.1. ParamDict

The base class extending the standard python dict.

5.5.2. Parameterized

Core functionality for parameterized subclassable components.

Merges base and user params into one ParamDict.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.6. Other Classes

5.6.1. MeshPool

A mesh pool to reuse meshes across a program.
FIXME: Mesh doesn’t support weakref. id refers to the shared_ptr, not the actual object.

5.6.2. SpacePool

A function space pool to reuse spaces across a program.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.7. Other Functions

5.7.1. get_grad_space

Get gradient space of Function.

This is experimental and currently only designed to work with CG-spaces.

5.7.2. get_parse_command_line_arguments

Return whether to parse command line arguments

5.7.3. set_parse_command_line_arguments

Switch on/off command line argument parsing

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cbcpost 2016.1.0 documentation

 	5. Overview of available functionality

5.8. Utilities

5.8.1. Functions

5.8.1.1. boundarymesh_to_mesh_dofmap

Find the mapping from dofs on boundary FS to dofs on full mesh FS

5.8.1.2. cbc_log

Log on master process.

5.8.1.3. cbc_print

Print on master process.

5.8.1.4. cbc_warning

Raise warning on master process.

5.8.1.5. compute_connectivity

Compute connected regions of mesh.
Regions are considered connected if they share a vertex through an edge.

5.8.1.6. create_function_from_metadata

Create a function from metadata

5.8.1.7. create_slice

Create a slicemesh from a basemesh.

Arguments:

	basemesh:	Mesh to slice

	point:	Point in slicing plane

	normal:	Normal to slicing plane

	closest_region:	Set to True to extract disjoint region closest to specified point

	crinkle_clip:	Set to True to return mesh of same topological dimension as basemesh

Only 3D-meshes currently supported for slicing.

Slice-instances are intended for visualization only, and may produce erronous
results if used for computations.

5.8.1.8. create_submesh

This function allows for a SubMesh-equivalent to be created in parallel

5.8.1.9. get_memory_usage

Return memory usage in MB

5.8.1.10. get_set_vector

Equivalent of setvector[set_indices] = getvector[get_indices] for global indices (MPI-blocking).
Pass temp_array to avoid initiation of array on call.

5.8.1.11. import_fenicstools

Import fenicstools helper function.

5.8.1.12. in_serial

Return True if running in serial.

5.8.1.13. mesh_to_boundarymesh_dofmap

Find the mapping from dofs on full mesh FS to dofs on boundarymesh FS

5.8.1.14. on_master_process

Return True if on process number 0.

5.8.1.15. restriction_map

Return a map between dofs in Vb to dofs in V. Vb’s mesh should be a submesh of V’s Mesh.

5.8.1.16. safe_mkdir

Create directory without exceptions in parallel.

5.8.1.17. strip_code

Strips code of unnecessary spaces, comments etc.

5.8.1.18. time_to_string

Format time in seconds as a human readable string.

5.8.1.19. timeit

Simple timer

5.8.2. Classes

5.8.2.1. Loadable

Create an instance that reads a Field from file as specified by the
parameters. Requires that the file is written in cbcpost (or in the same format).

Arguments:

	filename:	Filename where function is stored

	fieldname:	Name of Field

	timestep:	Timestep to load

	time:	Time

	saveformat:	Saveformat of field

	s function:	Function to load Field into

This class is used internally from :class:’.Replay’ and :class:’Restart’,
and made to be passed to PostProcessor.update_all.

5.8.2.2. Slice

Deprecated Slice-class

5.8.2.3. Timer

Class to perform timing.

Arguments:

	frequency:	Frequency which to report timings.

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	cbcpost 2016.1.0 documentation

6. Contributing

cbcpost is located at

https://bitbucket.org/simula_cbc/cbcpost

A git workflow is used, and the language is python. There are no
strict guidelines followed, but as a rule of thumb, consider the
following:

	No ‘*’ imports

	No unused imports

	Whitespace instead of tabs

	All modules, public functions and classes should have reasonable docstrings

	4 space indentation levels

	Unit tests should cover the majority of the code

	Look at existing code, and use common sense

cbcpost will follow the development of FEniCS, and will likely require
development versions of FEniCS-components between releases.

6.1. Pull requests

If you wish to fix issues or add features, please check out the code using git, make your changes in a clean branch and create a pull request [https://confluence.atlassian.com/display/BITBUCKET/Work+with+pull+requests].

Before making a pull request, make sure that all unit tests pass, and that you add sufficient unit tests for new code.

To avoid unnecessary work, please contact the developers in advance.

6.2. Report problems

Please report any bugs or feature requests to the issue tracker [https://bitbucket.org/simula_cbc/cbcpost/issues?status=new&status=open] on Bitbucket.

6.3. Contact developers

You can contact the developers directly:

	Øyvind Evju [https://www.simula.no/people/oyvinev]

	Martin Sandve Alnæs [https://www.simula.no/people/martinal].

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	cbcpost 2016.1.0 documentation

Index

 Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

 _static/submesh.png

_static/slicemesh.png

_static/stress_tree.png
u(x, ty)

o(u,p;tn)

_static/down.png

_images/cbcdashboard.png
Current case directory Current and available fields Play simulation ~ Timestep slider

. A <

ety R)
demaicocumentad P omvoundCyinde:

verion 2015,

e LGPt o

!
Batch parameters
(if available)

| 7
Parameters in case
directory Value range Vi

Interactive plot container

_static/file_tree.png
Results

— Pressure

— metadata.db
— Pressure.hdf5
— Pressure.xdmf

—— Pressure.hb

Norm_Pressure

— metadata.db

—— Norm_Pressure.db

—— Norm_Pressure.txt
— mesh.hdf5
—— params.pickle

—— params.txt

— play.db

_images/plotpyplot.png

_images/timederivative_tree.png
or F(tn) — F(tn1)

Ot T by —th

F(t,_y) tn

F(tn)

_static/up.png

_images/cbcdashboard2.png
cbcaashboara

Directory: /home/oyvinevirepositories/cbeflow
/demoldocumented/FlowAroundCylinder

Paraneters:

BatchParans =
casedir = 'BatchResults’
nun_cores = 4

Parans =
dt = (0.1, 0.65, 0.625, 0.0125)
N = (16, 32, 64, 128, 256)
mu = (0.001, 0.01, 0.1, 1.0)

License: LGPLV3 or later

Norm_StreamFunction

N\mu
16
32
64

128
256

- Play

0.001
0.026
0.121
0.120
0.156
0.155

0.01
0.019
0.132
0.157
0.169
0.174

0.1
0.013
0.136
0.172
0.188
0.196

1.0
0.013
0.136
0.173
0.190
0.197

dt 01
N al
mu al

cbepost version 2016.1

_static/up-pressed.png

_images/slicemesh.png

_images/file_tree.png
Results

— Pressure

— metadata.db
— Pressure.hdf5
— Pressure.xdmf

—— Pressure.hb

Norm_Pressure

— metadata.db

—— Norm_Pressure.db

—— Norm_Pressure.txt
— mesh.hdf5
—— params.pickle

—— params.txt

— play.db

_images/stress_tree.png
u(x, ty)

o(u,p;tn)

_images/submesh.png

_images/cbcdashboard1.png
cbcaashboara

Directory: /home/oyvinevirepositories/cbeflow
/demoldocumented/FlowAroundCylinder

Paraneters:
BatchParans

casedir = 'BatchResults’
nun_cores = 4

Parans =
dt = (0.1, 0.65, 0.625, 0.0125)
N = (16, 32, 64, 128, 256)

(0.001, .01, 0.1, 1.0)

License: LGPLV3 or later

Norm_Velocity Play
35
— N=64
— N=16
N=32-
N=256
— N=128
3.0
25
2.0
z
g
8
2
£
s
2
15
1.0
05
0.0+ 1
0

Time.

dt 01
N al
mu 0.001

cbepost version 2016.1

_images/plotdolfin.png

search.html

 Navigation

 		
 index

 		cbcpost 2016.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

_images/timederivative_stress_tree.png
do __ o(u,pitn) —o(u,pitni)
ot tn —tn1
n—1
o(u,p;tn_1)
u(x,tp_1) p(x,tn—1)

introduction.html

 Navigation

 		
 index

 		cbcpost 2016.1.0 documentation »

Introduction

cbcpost is developed to simplify the postprocessing of simulation results, produced by FEniCS solvers.

The framework is designed to take any given solution, and compute and save any derived data. Derived data can easily be made highly complex, due to the modular design and implementation of computations of quantities such as integrals, derivatives, magnitude etc, and the ability to chain these.

The interface is designed to be simple, with minimal cluttering of a typical solver code. This is illustrated by the following simple example:

... problem set up ...

Set up postprocessor
solution = SolutionField("Displacement", dict(save=True))
postprocessor = PostProcessor(dict(casedir="Results/"))
postprocessor.add_field(solution)

Add derived fields
postprocessor.add_fields([
 Maximum("Displacement", dict(save=True)),
 TimeAverage("Displacement", dict(save=True, start_time=1.0,
 end_time=2.0)),
])

t = 0.0
timestep = 0
while t < T:
 timestep += 1
 # ... solve equation ...

 # Update postprocessor
 postprocessor.update_all(dict("Displacement"=lambda: u), timestep, t)

 # continue

cbcpost is developed at the Center for Biomedical Computing [http://cbc.simula.no/pub/], at Simula Research Laboratory [https://www.simula.no/] by Øyvind Evju [https://www.simula.no/people/oyvinev] and Martin Sandve Alnæs [https://www.simula.no/people/martinal].

This pdf-file is generated from rst-files with an incomplete programmers reference. For the updated documentation and programmers reference, see cbcpost.readthedocs.org [http://cbcpost.readthedocs.org].

 © Copyright 2016, Martin Alnæs and Øyvind Evju.
 Created using Sphinx 1.3.5.

_static/cbcdashboard1.png
cbcaashboara

Directory: /home/oyvinevirepositories/cbeflow
/demoldocumented/FlowAroundCylinder

Paraneters:
BatchParans

casedir = 'BatchResults’
nun_cores = 4

Parans =
dt = (0.1, 0.65, 0.625, 0.0125)
N = (16, 32, 64, 128, 256)

(0.001, .01, 0.1, 1.0)

License: LGPLV3 or later

Norm_Velocity Play
35
— N=64
— N=16
N=32-
N=256
— N=128
3.0
25
2.0
z
g
8
2
£
s
2
15
1.0
05
0.0+ 1
0

Time.

dt 01
N al
mu 0.001

cbepost version 2016.1

_static/plotdolfin.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/cbcdashboard2.png
cbcaashboara

Directory: /home/oyvinevirepositories/cbeflow
/demoldocumented/FlowAroundCylinder

Paraneters:

BatchParans =
casedir = 'BatchResults’
nun_cores = 4

Parans =
dt = (0.1, 0.65, 0.625, 0.0125)
N = (16, 32, 64, 128, 256)
mu = (0.001, 0.01, 0.1, 1.0)

License: LGPLV3 or later

Norm_StreamFunction

N\mu
16
32
64

128
256

- Play

0.001
0.026
0.121
0.120
0.156
0.155

0.01
0.019
0.132
0.157
0.169
0.174

0.1
0.013
0.136
0.172
0.188
0.196

1.0
0.013
0.136
0.173
0.190
0.197

dt 01
N al
mu al

cbepost version 2016.1

_static/cbcdashboard.png
Current case directory Current and available fields Play simulation ~ Timestep slider

. A <

ety R)
demaicocumentad P omvoundCyinde:

verion 2015,

e LGPt o

!
Batch parameters
(if available)

| 7
Parameters in case
directory Value range Vi

Interactive plot container

_static/timederivative_stress_tree.png
do __ o(u,pitn) —o(u,pitni)
ot tn —tn1
n—1
o(u,p;tn_1)
u(x,tp_1) p(x,tn—1)

_static/timederivative_tree.png
or F(tn) — F(tn1)

Ot T by —th

F(t,_y) tn

F(tn)

_static/plotpyplot.png

_static/down-pressed.png

